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Abstract
We discuss the progress in the field of THz imaging based on time-domain spectroscopy during the last 20 years emphasizing 
several highlights. These include 3D mapping of the water distribution of plants, THz reflection imaging of samples with 
arbitrary shape, burn wound imaging and the early diagnosis of diabetic foot disease. These applications greatly benefit from 
the introduction of fibre-coupled THz time-domain system operated by rugged and portable femtosecond fibre-lasers. THz 
imaging is a versatile measurement method that has a plethora of practical applications and great promise for the future.

1  Introduction

The field of terahertz science and technology is gradually 
reaching a level of maturity that is reminiscent of, if not 
yet comparable to, that of its electromagnetic neighbors in 
the microwave and infrared regions. Much of this progress 
has been motivated by the idea of generating images with 
terahertz waves [1]. In this article, we will update and put 
in perspective the progress experienced by terahertz imag-
ing over the last two decades. In a sense, it is a sequel of 
the article “Recent advances in terahertz imaging” [2] that 
shares two authors with this publication and that appeared 
in this same journal in 1999. We do not intend to provide an 
exhaustive literature review, but instead to give an overview 
of how terahertz imaging and its applications have evolved, 
particularly in the specific areas that were discussed in the 
original 1999 article. We aim to provide some examples to 
illustrate the perspectives of this fascinating and promising 
field.

Terahertz spectroscopy has seen enormous changes over 
the last two decades. After the appearance of terahertz time-
domain spectroscopy (THz-TDS) in the 1980s [3, 4], which 
gave unprecedented access to the, at the time, elusive band 
of the electromagnetic spectrum that fell between the micro-
waves and the mid-infrared, it was more or less natural that 
people would start trying to produce images with this type 
of radiation [5]. Commercial terahertz systems did not exist, 
and the possibility of transporting these spectrometers or 
operating them outside a controlled laboratory environment 
was out of the question, mainly due to the dimensions and 
lack of stability of the solid-state lasers which were the heart 
of most THz-TDS systems.

Much has changed in the interim. A first step towards 
more flexible THz systems was made by Picometrix (now 
known as Terametrix), who developed THz-TDS system 
with fiber-pigtailed antennas in 2001 [6]. This advance ena-
bled many measurements that had previously been impos-
sible such as those involving light scattering [7] or spatial 
characterization of wave fronts [8], due to the fact that the 
antennas could now be flexibly repositioned. At that time 
the system was still based on a titanium-doped sapphire 
femtosecond laser, and the fibre-coupled antennas were still 
made from GaAs. The advent of antennas based on low-tem-
perature grown InGaAs/AlInAs multiple quantum wells [9] 
was a game changer, as these can be operated using rugged, 
compact and cost-effective rare-earth doped mode-locked 
fibre lasers. In subsequent years these antennas were sig-
nificantly improved [10, 11] and now portable THz-TDS 
systems based on these antennas are available from several 
companies. In addition, numerous alternative techniques 
to access the THz band have been introduced [12–15] and 
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many fixed wavelength CW sources and even planar detector 
arrays are offered commercially. In this article we will con-
centrate on results produced by the technique of THz-TDS, 
which were the main focus of the original article in 1999.

With the instrumental improvements, it is not surprising 
that the applications have also evolved. Terahertz radiation 
is now being used in fields as diverse as the study of funda-
mental properties of materials [16] to the inspection of the 
state of conservation of artwork [17, 18]. We aim to survey 
some of these exciting ideas, providing examples of how 
terahertz imaging is having impact in many areas, includ-
ing both some that were anticipated in 1999 and some that 
were not.

2 � T‑ray imaging

Our original article focused on the, at that time, newly devel-
oped method for generating images using terahertz time-
domain techniques. It included a discussion of the physics 
and engineering considerations required to construct and 
operate a time-domain spectrometer. These ideas have by 
now been reviewed many times [19, 20], and the systems 
have become commercially available from numerous ven-
dors. So, it is probably not necessary to discuss those issues 
in great detail here, except perhaps to mention a few of the 
most exciting improvements that have been reported in the 
intervening years. The bandwidth of pulses, initially limited 
to only a few THz, can now be extended to over 100 THz 
using the shortest laser pulses and free-space electro-optic 
sampling [21]. The peak electric field strength generated 
in a TDS system, initially limited to only a few volts per 
cm, can now go into the tens of megavolts/cm range [22]. 
The average power, initially in the nanowatt range, can now 
reach tens of milliwatts [23]. These advances have enabled 
many scientific breakthroughs, although mostly not involv-
ing imaging.

Next, we note that, as terahertz technologies have 
matured, the number of options available to researchers for 
creating images using terahertz radiation has grown signifi-
cantly. Of course, the raster-scanning technique described 
in 1999 is still in widespread use, as it offers a number 
of important advantages over other methods. Because it 
involves the acquisition of a complete time-domain wave-
form at each pixel of an image, it is in essence a measure-
ment of a hyperspectral data cube, which can be rich in 
information about the sample under study. From this one 
data set, images can be formed based on either the amplitude 
or the phase of any of the measured frequency components, 
which typically span a wide bandwidth covering more than 
one decade in frequency. This capability has been exploited 
in many interesting examples. For instance, Kawase and co-
workers demonstrated the identification of “white powders” 

in envelopes, distinguishing harmless substances from illicit 
drugs using spectroscopic signatures that are manifested in 
the amplitude of the measured spectrum [24]. Meanwhile, 
the ability to directly measure the phase (and/or time delay) 
is critical to the implementation of tomographic techniques 
using THz pulses [25], as well as THz holography [26].

Despite these advantages, the time-domain imaging tech-
nique also has some important disadvantages. One key con-
cern is the time required to acquire images: since a complete 
waveform is measured at each pixel, and this is generally 
accomplished using a single-point detector in a serial pro-
cess, the image acquisition time is generally on the scale of 
minutes, or longer. This issue has inspired many efforts to 
develop alternative techniques that are faster. One hot topic 
is to leverage recent work in computational imaging, which 
enables the formation of images using only a subset of the 
full pixel set. Early efforts explored the use of compressed 
sensing to perform single-pixel imaging [27], which can 
reduce the measurement time substantially at the cost of 
increased computational effort [28]. Subsequent work has 
built on this idea in a variety of ways, including Fourier 
single-pixel imaging [29, 30] and ghost imaging [31], as 
well as demonstrations of real-time video-rate image acqui-
sition [32].

Another approach to faster image acquisition is the devel-
opment of focal-plane arrays, which can be integrated into 
cameras for video-rate operation. The fabrication of a cam-
era with sufficient sensitivity to be useful with a relatively 
low-power THz-TDS source is extremely challenging, so this 
approach most often leverages other types of THz source, 
typically with more power but much less spectral bandwidth. 
One early demonstration employed a micro-bolometer array 
camera together with a quantum cascade laser operating at 
4.3 THz [33]. This report inspired many other efforts to 
design focal-plane arrays, using various material platforms 
and detection strategies [34–36]. Numerous THz cameras 
operating at video rate are now available on the commercial 
market [1].

These advances in imaging technologies have led to a 
commensurate growth in applications of terahertz imaging 
and sensing. As in 1999, it remains true that these ideas span 
a great variety of topics, from medical science to process 
monitoring to art conservation, ranging from very feasible 
[37, 38] to highly speculative. Some prominent recent suc-
cesses in the realm of commercial applications include the 
monitoring of multi-layer paint coatings on automobiles [39, 
40], the identification of defects in polymers and compos-
ites [41], and the characterization of chemical composition, 
porosity, and coating thickness in pharmaceutical tablets 
[42, 43].

One prominent possible application of THz imaging 
involves the contact-free mapping of the AC conduc-
tivity of materials or devices. After the early work of 
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Grischkowsky and co-workers demonstrated that THz-
TDS can be used for electrical characterization of doped 
semiconductors [44], the first THz image mapping the con-
ductivity of a doped wafer was reported in 1997 [45]. A 
more recent example described the mapping of the carrier 
mobility and chemical doping level in biased graphene 
layers [46, 47]. If the frequencies employed are well below 
the inverse carrier scattering time, as is often the case 
when broadband THz pulses are employed, the AC con-
ductance obtained is directly comparable to the DC value. 
Hence, this application may be important for example, for 
the spatially resolved electrical characterization of solar 
cell or battery materials.

In addition to industrial applications, transmission 
imaging has provided a new tool in the area of plant sci-
ence. The ability to image the water distribution within 
the plant has provided new and interesting information 
on the mechanisms to resist drought conditions of some 
desert plants such as Agaves. These plants produce a type 
of sugars called agave fructans, whose capacity to form 
large hydration shells [48] and therefore to retain water 
is remarkable. The 3-dimensional localization of these 
fructans obtained using terahertz imaging corresponds 
with the most hydrated parts of the plant, as seen in Fig. 1. 
Here, a 3-dimensional image and a 2-dimensional pro-
jection of the water content of the leaf are shown [49] 
together with visible images of cross sections of the leaf.

3 � Reflection imaging with T‑rays

Analogous to transmission imaging, a full time-dependent 
waveform is acquired for each pixel in reflection. So the 
data-set obtained in a reflection measurement is also a 
hyper-spectral cube, containing information about the 
composition of the sample under study. However, in many 
cases the useful information that can be extracted from 
these images is related not to spectroscopic composition 
but to the geometrical structure of heterogeneous samples, 
and particularly of layered media. When a sample has a 
complicated structure that incorporates interfaces within 
it, as long as all the materials involved are reasonably 
transparent, the contrast of their refractive indices will 
imply the existence of Fresnel reflections at each interface. 
Since the terahertz electromagnetic transients are rather 
short in time, owing to their small temporal coherence, 
their propagation through a sample with interfaces will 
lead to a series of reflected “copies” of the pulse separated 
in time. The time separation between them encodes the 
spatial separation between subsequent interfaces, therefore 
allowing the reconstruction of the internal structure of the 
sample in a similar fashion to B-scan ultrasonograms.

3.1 � Tomographic image reconstruction

The possibility of non-contact reconstruction of the inter-
nal geometry of complex layered material structures has 
attracted attention in many areas. In the earliest examples, 
the flatness of interfaces and prior knowledge about mate-
rial composition led to relatively straightforward problem 
in image reconstruction [50]. Of course, when the sample 
under study has a complicated non-planar surface, a sim-
ple normal-incidence reflection configuration is no longer 
effective, and a more complicated approach is need [8]. 
One interesting recent approach to overcome this chal-
lenge has been described by Stübling et al. By placing a 
THz-TDS system at the end of a robotic arm, and extract-
ing sample shape information from visible images or using 
structured light illumination, one can form THz reflection 
images of samples with arbitrary, even quite complex, 
shapes [51, 52]. This approach has been recently used in 
combination with photogrammetry to assess the age and 
composition of ancient pottery shreds, as shown in Fig. 2 
[53]. Other groups have implemented more advanced sig-
nal processing approaches to tomographic image recon-
struction, as discussed in Ref.  [54].

Fig. 1   a Cross section water-content image of an agave leaf. The 
image shows a high hydration core surrounded by a lower hydration 
layer. b Microscope image of a cross-section of an agave leaf where 
the inner hydrenchyma (white) and the outer chlorenchyma (green) 
are visible and correlate with the image in a. c Periodic acid-Schiff 
(PAS) staining of the agave leaf revealing the presence of carbohy-
drates. d 3-dimensional water-content image of the entire agave leaf 
from 3 perspectives showing the outer low-hydration, and inner high 
hydration regions. Adapted from [49] licensed under CC-BY 4.0
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3.2 � Medical imaging

Using terahertz as a probe in the medical area is an attrac-
tive option. For instance, terahertz radiation is non-ioniz-
ing, and therefore very safe to use as long as the average 
power is low enough to avoid producing significant heating 
of the tissues. Furthermore, it allows the water content 

of tissues to be determined in a contactless fashion. A 
topic that was highlighted in the original article was the 
assessment of tissue burns by reflection geometry. A few 
preliminary measurements consisting of one-dimensional 
scans across a burnt section of chicken breast tissue were 
presented at that time. Since then, a wealth of progress 
has been made on that front, particularly over the last 
decade. Terahertz imaging has proven its potential for the 
discrimination of the depth of the burns, which is hard to 
assess clinically. Such studies have been done both ex vivo 
[55] and in vivo [56] on various animal models such as 
Sprague–Dawley rats [57] and Landrace Yorkshire cross 
pigs [59] whose skin have similarities with humans. Fur-
thermore, differences in the post-burn water accumula-
tion dynamics caused by edema have been well studied 
with terahertz methods [59, 60]. In such studies, an initial 
depletion of the hydration at the burn site, in the minutes 
following the injury, produces a decrease of the terahertz 
reflection at the cutaneous surface. However, the subse-
quent inflammatory response generates an accumulation 
of water over the following few hours, which increases the 
reflection. This effect is more pronounced in third degree 
“full thickness” burns than in first- or second-degree “par-
tial thickness” burns as shown in Fig. 3.

A wealth of other applications of terahertz imaging in the 
medical field have been proposed over the last two decades. 
Of course skin is a type of tissue that is a natural candidate 
for terahertz inspection, since it is easily accessible. The 

Fig. 2   A histogram of refractive index values at different locations on 
four pottery sherds from the Punic, Roman, and modern epochs. The 
ancient sherds were recovered from an archaeological site in Sardinia, 
Italy. The inset shows measured variations in thickness (left) and 
refractive index values (right) for one of the Roman samples. Adapted 
from [53]

Fig. 3   Burn wound time series 
imaging results. a–e THz 
images of a partial thickness 
burn. f–j Partial thickness THz 
images superimposed on the 
registered visible frame. k–o 
THz images of a full thickness 
burn. p–t Full thickness THz 
images superimposed on the 
registered visible frame. THz 
contrast is distinct for each 
burn wound severity. In time 
series THz images of a partial 
thickness burn, the contact area 
shows a drop in TWC and an 
edematous front superior to the 
burn over time. In contrast to 
the partial thickness wound the 
contact area of a full thickness 
burn does not display a signifi-
cant drop in TWC. Additionally, 
the contact area is surrounded 
by a ring of TWC which runs 
concentric and coincident 
with the burn contact zone. 
[Reprinted] with permission 
from [60] ©The Optical Society
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first in vivo measurements of skin [61] were reported in the 
early 2000s; however, the degree of sophistication required 
for actual medical applications has maintained interest in 
the topic up to the present day [62]. As one important exam-
ple, diabetic foot syndrome, a consequence of diabetes, is a 
condition for which there is currently no objective diagnos-
tic test, particularly in early stages. Many diabetic patients 
experience a combination of symptoms, that include the loss 
of sensation (neuropathy) related to a neurological deterio-
ration in their lower limbs, poor irrigation (vasculopathy) 
and dehydration of the skin of their feet. In many cases this 
condition evolves into ulcers in the feet, and can result in 
partial or total amputations of the limbs. Indeed, this is the 
most common cause of amputations after traumatic acci-
dents. Since skin dehydration accompanies this condition, 
terahertz imaging has been proposed as a potential tool for 
its objective and early diagnosis [63, 64], showing potential 
to become a valuable tool on this front. The most recent 
imaging study of diabetic foot [65] included a cohort of 
178 human subjects (see Fig. 4), being to the best of our 
knowledge, the largest human population to ever be imaged 
with terahertz radiation for medical purposes. This work 
provides evidence that supports neurological deterioration 
as the underlying cause for dehydration, which is an open 
debate among clinicians.

Another tissue that is easily accessible without the need 
of endoscopes or surgery is the cornea. The possibility of 
non-contact monitoring of the corneal hydration has also 
attracted attention recently [66, 67]. The water content of the 
cornea is an important indicator of the ocular health [68], 

and could be used for the diagnosis and progression assess-
ment of various ophthalmological conditions such as post-
transplant corneal rejection, Fuchs dystrophy, keratoconus, 
trauma, infection, and other vision-impairing diseases [69].

Finally, we would be remiss if we did not mention that 
many efforts have been made to use terahertz imaging in 
oncology [70, 71]. Studies have focused on detection of 
breast [72], skin [73, 74], and colon [75–77] cancer, among 
other types [78–80] of cancer. In many of these studies, it 
has been demonstrated that terahertz imaging can indeed 
distinguish cancerous tissue from the surrounding healthy 
tissue. However, the exact mechanisms that lead to contrast 
in terahertz images is still a topic of debate [81], and this 
uncertainty has hindered widespread adoption of the tech-
nique in clinical settings.

4 � THz near‑field imaging

Another topic that was a focus of discussion in the original 
article related to the application of near-field techniques in 
the terahertz range. The 1999 paper displayed the very first 
near-field terahertz image, obtained using a sub-wavelength 
aperture, consisting of a conical tapered horn with an output 
opening of about 100 � m diameter [82]. With a focus on 
the use of apertures for sub-wavelength confinement, the 
exciting developments in apertureless scattering-type scan-
ning near-field microscopy (s-SNOM) taking place at almost 
the same time [83–85] were not mentioned at all. Despite 
some very impressive subsequent progress in aperture-based 
methods [86, 87], the s-SNOM approach, in which radiation 
is scattered from a sharply tapered metal tip held in close 
proximity to the sample under study, has become the domi-
nant tool for nanoscale near-field spectroscopy and imaging 
in the terahertz range.

Early work in translating scattering-based near-field 
imaging to the terahertz range involved the use of home-built 
microscopy systems, with limited control and resolution [88, 
89]. Nevertheless, these early efforts established some of the 
key distinctions between the initial studies at either opti-
cal, infrared, or microwave frequencies, and those involving 
terahertz time-domain spectrometers. These included effects 
related to the broad spectral bandwidth of the source such as 
antenna effects associated with the tapered metal tip [90], 
as well as the recognition that the tip itself can act as an 
effective and low-loss waveguide in this spectral range [91]. 
Unlike in other regimes of the spectrum, free-space electro-
optic sampling of the broadband subpicosecond terahertz 
pulse enables direct measurement of the electric field in the 
near field of the tip apex [92], which can be used to develop 
a better understanding of the scattered far-field signals [93]. 
This work led rapidly to the demonstration of images with 
nanoscale resolution using terahertz waves [94, 95].

Fig. 4   The use of terahertz imaging in medicine has implied adapt-
ing the conventional terahertz spectrometers to perform images of the 
human body. a A prototype of a foot scanner where the patient can sit 
while the terahertz spectral image is acquired by a time-domain spec-
troscopy setup mounted on an X–Y raster scanning stage underneath. 
b The raw image acquisition procedure. c The processed images of 
two patients, which have been converted into a water-content map. 
On the left are the feet of a diabetic with no complications, and on the 
right a diabetic showing nephropathy. The hydration levels observed 
in these two patients are remarkably different. The images are part of 
the data-set reported in [65]
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More recently, research in terahertz near-field science 
has surged, as a number of groups have reported excit-
ing advances in the study of nanoscale materials and their 
fundamental excitations. Measurements of the tip-induced 
propagation of plasmons in single-layer graphene [96, 97] 
launched a tremendous wave of interest in the study of 2D 
materials using terahertz nanoscopy. Researchers have 
branched out to explore the possibilities offered by other ter-
ahertz sources, both pulsed and continuous-wave [98–100]. 
Meanwhile, the first report of time-resolved pump-probe 
experiments coupled to an apertureless s-SNOM [101] has 
inspired interest in studying terahertz photophysics with 
both femtosecond temporal resolution and nanometer-scale 
spatial resolution [102, 103]. Several other variations of 
these experiments have been reported. One notable example 
is nanoscale terahertz emission microscopy [104], in which 
an incident visible or near-infrared pulse induces THz emis-
sion in the sample, and this emission is coupled out to the far 
field by the AFM tip. This approach can be used to perform 
emission spectroscopy on single nanostructures. Because 
of the nonlinearity of the THz generation mechanism, this 
emission technique can offer improved resolution compared 
to the more common THz s-SNOM approach [105, 106]. 
Figure 5 shows a side-by-side comparison of a THz scatter-
ing image (linear optics) and a THz emission image (non-
linear optics) on the same region of a sample.

Finally, this discussion would not be complete without 
also mentioning the use of terahertz pulses in conjunction 
with scanning tunneling microscopy (STM) [107]. An inci-
dent THz pulse can act as a transient bias across a tunneling 
junction [108], enabling STM measurements with sub-
picosecond temporal resolution in addition to their intrinsic 
atomic-scale spatial resolution [109, 110]. A recent review 
article discusses these and other terahertz scanning probe 
techniques in great detail [111].

5 � Conclusions

One can state that the field of terahertz science and technol-
ogy has evolved considerably during the last 20 years. New 
THz sources such as QCLs or the TECSEL [112] and new 
detector arrays have been demonstrated. This can enable 
very fast and inexpensive THz imaging systems. Yet, also 
the specific field of THz imaging based on time-domain 
spectroscopy made considerable progress. On one hand 
many practical applications have been reported, some of 
which have been reviewed in this article. On the other hand 
the THz-TDS system itself has evolved. Fibre-coupled sys-
tems are widely available which introduces a great deal of 
flexibility. The fibre-coupled antennas can be easily trans-
lated enabling fast and flexible imaging configurations, as 
illustrated in Sect. 3.2. The antennas can also be attached to 
a robotic arm allowing for THz tomography of samples with 
arbitrary shape. Although the use of femtosecond fibre-lasers 
reduced the systems cost significantly, the price level of THz 
systems should further drop in the future to allow a wider 
market access. One way to achieve this could be the use of 
mode-locked semiconductor lasers as demonstrated recently 
[113]. Although 20 years ago one would have expected THz 
imaging systems to be more widely used in industry today, 
overall expectations have been met. Terahertz imaging is 
a valuable measurement tool that has opened a variety of 
applications in many fields.
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